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ABSTRACT

As a fundamental task in computer vision, object detection
methods for the 2D image such as Faster R-CNN and SSD can
be efficiently trained end-to-end. However, current methods
for volumetric data like computed tomography (CT) usually
contain two steps to do region proposal and classification sep-
arately. In this work, we present a unified framework called
Volume R-CNN for object detection in volumetric data. Vol-
ume R-CNN is an end-to-end method that could perform re-
gion proposal, classification and instance segmentation all in
one model, which dramatically reduces computational over-
head and parameter numbers. These tasks are joined using a
key component named RoIAlign3D that extracts features of
RoIs smoothly and works superiorly well for small objects
in the 3D image. To the best of our knowledge, Volume R-
CNN is the first common end-to-end framework for both ob-
ject detection and instance segmentation in CT. Without bells
and whistles, our single model achieves remarkable results in
LUNA16. Ablation experiments are conducted to analyze the
effectiveness of our method.

Index Terms— object detection, computed tomography
(CT), LUNA16.

1. INTRODUCTION

Different from the 2D image field, it is very challenging to
fulfill the task of detection on CT due to its characteristic.
The target in CT is much tinier than normal objects and it
needs several experienced radiologists each spending tens of
minutes to draw a convincing conclusion, which makes the
CT annotation precious and rare. With tiny target, lack of
data and high data dimension, the research on CT is easy to
fail due to overfitting, especially when no pretrained models
are available because of either commercial confidentiality or
diverse data distribution.

Traditional CT diagnosis usually involves hand-designed
features or descriptors requiring domain expertise [1, 2]. Af-
ter the large-scale LIDC-IDRI [3] and LUNA16 [4] dataset
became publicly available, deep learning-based methods have
become the dominant framework for nodule research. Current
leading methods for CT detection mainly contain two separate

steps: propose candidates first and then perform false positive
reduction on these candidates with a 3D convolutional neural
network (CNN). [5] first established a 3D fully convolutional
network (FCN) to screen the candidates from volumetric CT
scans, and then a 3D ConvNet classification network is de-
signed to move the false positive candidates [5]. [6] improved
the first stage by introducing 2D RPN to extract proposals in
individual 2D images then combine them to generate 3D pro-
posals [6]. However, these methods are inefficient for both
training and inference because candidate proposal and false
positive reduction are performed in two separate steps. Worse
still, they require sophisticated processing pipeline within the
two steps, leading to low efficiency.

We address that candidate proposal and false positive re-
duction could be joined using RoI Pool methods to reduce the
number of parameters and computational overhead by shar-
ing convolutional feature maps. We further add mask predic-
tion support by introducing a light mask head. The whole
system is named Volume R-CNN (see Figure 1), which gen-
erate R-CNN family [7, 8, 9, 10] to 3D CT. In contrast to
previous works that rely heavily on handcraft features, spe-
cialized knowledge or require complex multi-stage process-
ing, Volume R-CNN is an end-to-end framework could per-
form object detection and instance segmentation simultane-
ously and efficiently. To the best of our knowledge, it is the
first unified and common framework for object detection and
instance segmentation in volume. We expected the proposed
method could be applied to a wide range of volumetric data
and serve as a meta-algorithm for further research in volumet-
ric data. Experimental results have confirmed the effective-
ness of our methods. Without bells and whistles, our method
could gain competitive results in LUNA16 directly with one
single model. Ablation experiments are conducted to investi-
gate the behavior of Volume R-CNN, especially the key com-
ponent RoIAlign3D.

2. METHODS

The proposed method consists of five components, as illus-
trated in Figure 1. The input is cuboid of size D × H ×W ,
depth, height, width along the Z, Y,X axes respectively. The
backbone is a 3D U-[11] extracting features of CT, from



Fig. 1. The Volume R-CNN framework for object detection and instance segmentation. RoIs, bounding box and mask are all
in 3D space, simplified for visualization herein. Loss from RPN, box head and mask head sum as final train objective. RoIs are
seen as input data and the dotted line means no gradient during backward. RoIAlign are they key operation that joins other 4
modules and accelerates the whole process by directly extracting feature of RoIs on the feature map of CT.

which Region Proposal Network (RPN) proposes candidate
bounding boxes called region of interests (RoI) — cuboid
boxes of different shapes on different locations. The feature
of RoIs is extracted using RoIAlign 3D — an efficient module
that converts the features inside any valid RoIs with different
size into a small feature map with a fixed spatial size. The fea-
ture of RoIs is further sent to two relatively independent head
to parallelly predict bounding box (Box Head) and instance
segmentation mask (Mask Head) for the target.

2.1. Region Proposal Network (RPN)

A Region Proposal Network (RPN) outputs a set of cuboid
object proposals, each with a confidence score. This process
is modeled with a fully convolutional network. For training
RPNs, a binary class label (of being an object or not) is as-
signed to each anchor. We assign a positive label to two kinds
of anchors: (i) anchors with the highest Intersection-over-
Union (IoU) overlap with a ground-truth box, or (ii) anchors
with an IoU overlap higher than 0.5 with any ground-truth
box. We assign a negative label to a non-positive anchor if its
IoU ratio is lower than 0.02 for all ground-truth boxes. An-
chors that are neither positive nor negative do not contribute
to the training objective. Only one positive anchor is ran-
domly chosen as the target, and the others do not contribute
to the training objective. There are much more negative an-
chors than positive ones. Hard negative mining [12] is used
to deal with this problem. The N negative samples with high-
est classification confidence scores are selected as the hard
negatives. The others are discarded and not included in the
computation of loss. We adopt N = 2 in our experiments.

RPN produces a prediction for each anchor. Then a non-
maximum suppression (NMS) operation with an IoU thresh
of 0.2 is performed to rule out the overlapping proposals. The
selected location-refined anchors are called Region of Inter-
ests (RoI). RoIs are seen as input data to be sent to RoIAlign,
and gradient does not backward through them.

2.2. RoIAlign 3D

The RoIAlign 3D operation uses trilinear interpolation [13] to
convert the features inside any valid RoIs into a small feature
map with a fixed spatial extent of (oD, oH, oW ) (e.g., 4×4×
4), where oD, oH and oW are layer hyper-parameters that are
independent of any particular RoI. Each RoI is defined by a
six-tuple (z, y, x, d, h, w) that specifies its center coordinates
and shape.

RoIAlign brings better forward output and backward gra-
dient, because of the way to computing the feature map in
roi bins. For each target voxel in the bin, 8 nearest voxels of
the feature map are used to calculate the interpolated value,
while for RoIPool, only one voxel is selected after compar-
ison, which results in the bottleneck of gradient backward.
For an intuitive understanding of the strength of RoIAlign, we
conduct simple experiments and show the results in Figure 2.
The output of RoIAlign is much clearer than RoIPool under
the same resolution. Also, the gradient of RoIPool tends to
be noisy and fuzzy, while the gradient of RoIAlign is much
more smooth, balanced and well-proportioned, which indi-
cates that the RoIAlign has superior performance in both for-
ward and backward period. RoIAlign leads to considerable
improvements for both box and mask prediction which will
be elucidated in the experiments.

2.3. Box Head and Mask Head

The RPN emits region proposals without category and the
main purpose of the box head is to predict the categories of
given RoIs and refine the RoIs to give more accurate location
and shape prediction. We take 8 RoIs from region proposals
that have IoU with a ground-truth bounding box of at least 0.3.
These RoIs comprise the examples labeled with a foreground
object class. 24 RoIs are sampled that have a maximum IoU
with ground-truth in the interval [0.0, 0.001), following [9].
These are the background examples and are labeled with 0.
The sampled RoIs are also used as training target in mask



Fig. 2. RoIAlign vs RoIPool. RoIAlign give better for-
ward output and the gradient is more balanced and well-
propotioned in backward. Origin results are 3D cube, center
slice is adopted for easy visualization and better understand-
ing.

head.
Mask head gives mask prediction for every RoI. A similar

strategy is used for mask representation and training objec-
tive as mask R-CNN [10] except that Volume R-CNN works
in the 3D space. For every RoI, mask head gives a mask of
m×m×m, double size of the RoI feature. The ground-truth
mask within the bounding box is resampled to the same size.
The prediction procedure is addressed naturally by the pixel-
to-pixel correspondence provided by convolutions. Specif-
ically, the mask from each RoI is predicted using an FCN.
This allows each layer in the mask branch to maintain the ex-
plicit object spatial layout without collapsing it into a vector
representation that lacks spatial dimensions.

3. EXPERIMENTS AND RESULTS

3.1. Main experiments on LUNA16

We perform a thorough comparison of Volume R-CNN
to other methods along with detail ablation experiments.
LUNA16 [4] is adopted in the experiments for comparison
and analysis. LUNA16 contains 888 chest CT scans and 1186
pulmonary nodules. Each scan, with a slice size of 512× 512
voxels, around 0.6 mm/voxel, and was annotated during a
two-phase procedure by four experienced radiologists. Partic-
ipants are required to perform 10-fold cross-validation when
they use the provided data both as training and as test data.
Results are evaluated using the Free-Response Receiver Op-
erating Characteristic (FROC) analysis [14] which is defined
as the average of the sensitivity at seven predefined false
positive rates: 1/8, 1/4, 1/2, 1, 2, 4, and 8 FPs per scan.

The result on box head is used as the final prediction
but mask head is also included in the training objective. In
Table 1, we compare Volume R-CNN to other methods re-
ported in the official conclusion [4] of LUNA16 and some

claimed leading results in the website (https://luna16.grand-
challenge.org/results/). For those publicly available methods,
our method gets very competitive results with one single
model without bells and whistles. It is notable that other
leading methods on the website do not offer the detailed de-
scription due to commercial confidentiality and intellectual
property, and it may not be a fair comparison.

Table 1. Results in LUNA16
method FROC

Our Single model (Volume R-CNN) 0.884
DeepLung [15] 0.842

3D FCN+CNN [5] 0.839
2D R-CNN+3D CNN [6] 0.891

2D SSD [16] 0.649
PAtech 0.951

JianpeiCAD 0.950
iFLYTEK-MIG 0.941

iDST-VC 0.897
AIDENce 0.807

Volume R-CNN outputs are visualized in Figure 3. The
left is a nodule in the CT visualized in the 3D view. Detect-
ing such a target is as hard as looking for a needle in a sea.
We crop the CT at a side length of 36 with the nodule in the
center for further visualization. It is notable that each mask
is annotated by 4 radiologists and they are averaged as the
ground-truth mask. The last row shows some unsatisfying re-
sults. One is missed while the other is the false positive. But
it is also found that for the false positive, the mask prediction
could work as a false positive reduction by stay inactivated
on the false positive bounding boxes. But we do not use mask
prediction to refine the box results in this work.

3.2. Ablation Experiments

We run several ablations experiments to analyze Volume R-
CNN. Results are shown in Table 2 and discussed in detail
next. We use 10-fold validation for the fair comparison with
other methods in the previous subsection, however, in the
ablation experiments, the results are compared within our
method, so we used subset 0 as the test set and train on subset
1–9 to accelerate experiments.

As can be inferred from Table 2, box head (Box vs. RPN)
and mask head (Mask vs. Box) can both give a promotion to
the performance, compared to RPN. This can be interpreted

Table 2. Ablation Comparison
method resolution Box Mask RoI Layer FROC
RPN 3D 1 mm - - - 0.870

Box with Pool 1 mm X - RoIPool 0.875
Box with Align 1 mm X - RoIAlign 0.891
Mask with Pool 1 mm X X RoIPool 0.880

Mask With Align 1 mm X X RoIAlign 0.905
Box in 0.5 mm 0.5 mm X - RoIAlign 0.915



Fig. 3. Selected results of Volume R-CNN on LUNA16. Left shows a nodule mask in 3D view (better viewed in color) and
others are results of detection. Origin results are the 3D cube. For easy visualization and better understanding, the target is
cropped in the center with a side length of 36 voxels and the center slice is visualized. The ground-truth bounding box is drawn
with a green box with a thicker edge without probability. The last row shows some unsatisfying results.

as that box head adds another procedure of classifying to give
a more accurate prediction (the same as false positive reduc-
tion). While the mask head mainly benefits from more infor-
mation (mask data) added to guide the training procedure.

RoIAlign gives significant improvement to the model,
which can be seen obviously from the comparison of (Box
with Pool vs. Box with Align and Mask with Pool vs. Mask
with Align). Another proof is that Box With RoIAlign outper-
form Mask with RoIPool, which demonstrate that even with
more data (mask data), RoIPool could not fully utilize them
as RoIAlign.

Data resolution has a great impact on the performance
(0.891 vs. 0.915), which seems straightforward. The origi-
nal data resolution of CT is around 0.6 mm/voxel and after
resampled to 1 mm, some information is inevitably to lose,
which has a crucial impact on the small targets. For example,
a nodule with a diameter of 5 mm would only occupy less
than 125 voxels (cube with side length of 5 pixels) with reso-
lution 1 mm/voxels. If it is resampled to 0.5 mm/voxel, it
would be a cube with side length 10, occupying around 1000
voxels. Even though higher data resolution gives a great pro-
motion, it is not used online since it greatly slows down the
processing (around 8x slower).

4. CONCLUSION

Most of the existing methods in volumetric CT detection re-
quire hand-crafted feature, multi-step processing or are con-
fined to specific data. We novelly propose a unified detection
framework named Volume R-CNN that joins region proposal,
classification and instance segmentation using RoIAlign. It
dramatically reduces computational overhead and number of
parameter and could be trained end-to-end. Without bells
and whistles, our single model gains competitive results on
LUNA16. Ablation experiments have been conducted to de-
tailedly analyze the effectiveness of our method.
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