lber ATG

INTRODUCTION

• **Depth completion task** is to generate dense depth predictions from RGB image and sparse depth.

Sparse depth

RGB image

- Depth completion is important in self-driving for downstream perception tasks (e.g., 3D detection) because it can remedy the sparsity of lidar observation.
- Related Work:
 - Learns representations solely in 2D image space by applying 2D convolution on RGBD features.
 - Has difficulty capturing fine-grained 3D geometry as 3D structure is ignored in feature learning
 - Resorts to multi-task learning for better performance (e.g., exploiting supervision from semantic segmentation, surface normal estimation)
- By performing convolution on both **2D and 3D** spaces, the model is able to learn better feature representation.
 - 2D representation: It provides dense appearance cue, but the grid neighbors may cover both **foreground** and **background** objects.

- 3D representation: Object has clear boundary. The *K* nearest neighbors of the center point are based on the exact 3D geometric correlation.

- We build our depth completion model, **FuseNet**, by stacking a set of proposed **2D-3D Fuse Blocks**.
- Our method achieves new state-of-the-art on KITTI depth completion benchmark.

Learning Joint 2D-3D Representations for Depth Completion Yun Chen¹, Bin Yang^{1,2}, Ming Liang¹, Raquel Urtasun^{1,2}

Dense depth

- tures. It contains 3 components:

 - Fusion: fuse the point features back to image plane using unprojection and sum all features.

- input and output stages.
- tween accuracy and model size.
- weight.

¹Uber ATG, ²University of Toronto

MODEL

• The proposed block can fully exploit both 2D appearance and 3D geometric fea-

– **2D Branch:** exctract multi-scale 2D convolution on RGBD feature map. – **3D Branch:** index point features from the image with projection matrix and then adopt *continuous convoluton* to extract 3D geometric features.

> (C, H, W) (C, H, W) (C, H, W) \rightarrow Bilinear Conv(3, 1, C) Project to 2D-3D Fuse Block sparse image Block Dense Depth Points FuseNet

• FuseNet is built with proposed blocks plus a few 2D convolution layers at the • We can modify the number of channels and blocks to get a better trade-off be-• FuseNet is trained from scratch without using any additional data or pretrain

size trade-off.

Method	R
SparseConvs	16
CSPN	1(
DDP	8
NConv-CNN	8
Sparse2Dense	8
PwP	7
DeepLiDAR	7
FusionNet	7
Our FuseNet	7

Sparse2Dense

EXPERIMENT RESULTS

Our method achieves state-of-the-art in the KITTI benchmark with much better accuray-

NConv

Ours (FuseNet)