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INTRODUCTION
• Depth completion task is to generate dense depth predictions from RGB image

and sparse depth.

• Depth completion is important in self-driving for downstream perception tasks
(e.g., 3D detection) because it can remedy the sparsity of lidar observation.

• Related Work:

– Learns representations solely in 2D image space by applying 2D convolution
on RGBD features.

– Has difficulty capturing fine-grained 3D geometry as 3D structure is ignored
in feature learning

– Resorts to multi-task learning for better performance (e.g., exploiting super-
vision from semantic segmentation, surface normal estimation)

• By performing convolution on both 2D and 3D spaces, the model is able to learn
better feature representation.

– 2D representation: It provides dense ap-
pearance cue, but the grid neighbors may
cover both foreground and background
objects.

– 3D representation: Object has clear bound-
ary. The K nearest neighbors of the center
point are based on the exact 3D geometric
correlation.

• We build our depth completion model, FuseNet, by stacking a set of proposed
2D-3D Fuse Blocks.

• Our method achieves new state-of-the-art on KITTI depth completion bench-
mark.

MODEL
• The proposed block can fully exploit both 2D appearance and 3D geometric fea-

tures. It contains 3 components:
– 2D Branch: exctract multi-scale 2D convolution on RGBD feature map.
– 3D Branch: index point features from the image with projection matrix and

then adopt continuous convoluton to extract 3D geometric features.
– Fusion: fuse the point features back to image plane using unprojection and

sum all features.
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• FuseNet is built with proposed blocks plus a few 2D convolution layers at the
input and output stages.

• We can modify the number of channels and blocks to get a better trade-off be-
tween accuracy and model size.

• FuseNet is trained from scratch without using any additional data or pretrain
weight.

EXPERIMENT RESULTS
Our method achieves state-of-the-art in the KITTI benchmark with much better accuray-
size trade-off.

Results on KITTI test set Trade-off between accuracy and model size

Method RMSE MAE
(mm) (mm)

SparseConvs 1601.33 481.27
CSPN 1019.64 279.46
DDP 832.94 203.96
NConv-CNN 829.98 233.26
Sparse2Dense 814.73 249.95
PwP 777.05 235.17
DeepLiDAR 775.52 245.28
FusionNet 772.87 215.02
Our FuseNet 752.88 221.19
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